A n'utiliser qu'après avoir VRAIMENT cherché et rédigé les exercices !

Exercice 1 : Révisions calculatoires

1.

$$A = \frac{\frac{x}{x-y} - \frac{y}{x+y}}{\frac{y}{x-y} + \frac{x}{x+y}} = \frac{\frac{x(x+y) - y(x-y)}{x^2 - y^2}}{\frac{y(x+y) + x(x-y)}{x^2 - y^2}} = \frac{x^2 + y^2}{y^2 + x^2} = 1$$

$$B = \frac{1}{x - \frac{1}{3 + \frac{x-2}{5-x}}} = \frac{1}{x - \frac{5-x}{13 - 2x}} = \frac{13 - 2x}{-2x^2 + 14x - 5}$$

2.
$$A = (2\sqrt{3} - 3\sqrt{5})^2 = 57 - 12\sqrt{15}$$
 $B = (7\sqrt{2} - 5\sqrt{3})(5\sqrt{3} + 7\sqrt{2}) = 23$ $C = (7\sqrt{7} - 5\sqrt{5})(-7\sqrt{7} - 5\sqrt{5}) = -218$ $D = (\sqrt{72} - \sqrt{288})(\sqrt{288} - \sqrt{72}) = -72$ $E = (2 - \sqrt{3})^n(2 + \sqrt{3})^n = [(2 - \sqrt{3})(2 + \sqrt{3})]^n = 1^n = 1$

3.

$$A = \frac{1}{5 - 2\sqrt{2}} = \frac{5 + 2\sqrt{2}}{17} \qquad B = \frac{3\sqrt{5}}{2\sqrt{5} + 1} = \frac{30 - 3\sqrt{5}}{19}$$
$$C = \frac{\sqrt{2} + \sqrt{3}}{5\sqrt{3} + 3\sqrt{2}} = \frac{(\sqrt{2} + \sqrt{3})(5\sqrt{3} - 3\sqrt{2})}{57} = \frac{9 + 2\sqrt{6}}{57}$$

4.

$$A = [(a^{2}b^{3})^{4}]^{5} = a^{40}b^{60} \qquad B = (a^{3}b^{-4})^{2} \times (-2a^{-5}b^{6})^{3} = -8a^{-9}b^{10};$$

$$C = \left(\frac{a^{2}}{b^{3}}\right)^{2} \times \left(\frac{a}{4b}\right)^{3} \times \left(\frac{b^{2}}{a}\right)^{2} = \frac{a^{5}}{64b^{5}} \qquad D = \left(\frac{a^{1}b^{-2}}{a^{-3}b^{4}}\right)^{5} \div \left(\frac{a^{-6}b^{5}}{a^{4}b^{-3}}\right)^{3} = a^{50}b^{-54}$$

5.

$$A = (-4)^{60} \times (-0.125)^{41} = -(2^{120} \times 2^{-123}) = -0.125$$

$$B = 40^{71} \times (1.25)^{48} \times 10^{-119} = 2^{213}.5^{71}.5^{48}.2^{-96}.2^{-119}.5^{-119} = 2^{-2} = 0.25$$

Exercice 2:

1). E_1 : $x^2 - 5x - 6 = 0$ -1 est une racine évidente, or $ax_1x_2 = -6$ d'où 6 est l'autre racine. (autre méthode : utilisation du discriminant)

$$\mathcal{S} = \{-1; 6\}$$

$$E_2$$
: $x^2 - 2\sqrt{3}x + 3 = 0$

 E_2 : $x^2 - 2\sqrt{3}x + 5 = 0$ Soit $x \in \mathbb{R}$, x est solution de E_2 si et seulement si (ssi) $\left(x - \sqrt{3}\right)^2 = 0$ (identité remarquable)

ssi
$$x = \sqrt{3}$$
 d'où $S = \{\sqrt{3}\}$

 E_3 : $x^2 + 2x + 2 = 0$ Calculons le discriminant du polynôme $x^2 + 2x + 2$: $\Delta = b^2 - 4ac = 4 - 4 \times 2 = -4 < 0$ Donc ce polynôme du 2nd degré n'admet pas de racines. $S = \emptyset$

$$I_4$$
: $-6x^2 + 12x + 90 \ge 0$

Soit $x \in \mathbb{R}$, x est solution de I_4 ssi $x^2 - 2x - 15 \le 0$

Calculons le discriminant du polynôme $x^2 - 2x - 15$: $\Delta = (-2)^2 - 4 \times 1 \times (-15) = 64 = (8)^2 > 0$

Donc ce polynôme du 2nd degré admet deux racines $\begin{cases} x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{z - 8}{2} = -3 \\ x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{z + 8}{2} = 5 \end{cases}$

Or un polynôme du 2^{nd} degré est du signe du coefficient de x^2 à l'extérieur des racines donc S = [-3; 5]

 I_5 : $\frac{1}{4}x^2 - x + 1 > 0$ $\Delta = (-1)^2 - 4 \times \frac{1}{4} \times 1 = 0$

donc le polynôme $\frac{1}{4}x^2 - x + 1$ admet une seule racine : $x_0 = -\frac{b}{2a} = 2$. D'où $\mathcal{S} = \mathbb{R} \setminus \{2\}$

On pose $X = \cos x$ et on résout $2X^2 + 3X - 2 = 0$. $\Delta = 25$

Donc
$$\begin{cases} X_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-3 - 5}{4} = -2\\ X_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-3 + 5}{4} = \frac{1}{2} \end{cases}$$

Or $X = \cos x$. On résout donc $\cos x = -2$ ou $\cos x = \frac{1}{2}$

 $\forall x \in \mathbb{R}, \cos x \in [-1; 1], \text{ donc } \cos x = -2 \text{ est impossible.}$

$$\cos x = \frac{1}{2} ssi \ x = \frac{\pi}{3} + 2k\pi \text{ ou } x = -\frac{\pi}{3} + 2k\pi \text{ , } k \in \mathbb{Z} \text{ d'où}$$

$$\mathcal{S} = \left\{ \frac{\pi}{3} + 2k\pi; -\frac{\pi}{3} + 2k\pi \text{ avec } k \in \mathbb{Z} \right\}$$

$$S = \left\{ \frac{\pi}{3} + 2k\pi; -\frac{\pi}{3} + 2k\pi \text{ avec } k \in \mathbb{Z} \right\}$$

 E_6 : $e^{2x^2+3} = e^{7x}$

Soit $x \in \mathbb{R}$, x est solution de E_6 ssi $2x^2 + 3 = 7x$ car la fonction exponentielle est strictement croissante sur \mathbb{R}

$$ssi x = \frac{7 - \sqrt{25}}{4} = \frac{1}{2} ou x = \frac{7 + \sqrt{25}}{4} = 3 \ (\Delta = (-7)^2 - 4 \times 2 \times 3 = 25) \quad D'où \left[S = \left\{ \frac{1}{2}; 3 \right\} \right]$$

 I_7 : $e^{3x+5} \le 1$

Soit $x \in \mathbb{R}$, x est solution de E_6 ssi $e^{3x+5} \le e^0$

ssi $3x+5\leq 0$ car la fonction exponentielle est strictement croissante sur $\mathbb R$

ssi
$$x \le -\frac{5}{3}$$

D'où
$$S =]-\infty;-5/3]$$

2) a)
$$f(x) = x^2 - 2x - 3 = x^2 - 2x + 1 - 1 - 3$$
 donc $f(x) = (x - 1)^2 - 4$

b) $-2 \le x \le 0$ ssi $0 \le x^2 \le 4$ car la fonction carrée est strictement décroissante sur \mathbb{R}^-

 $et -2 \le x \le 0 \ ssi \ 0 \le -2x \le 4$

donc si
$$-2 \le x \le 0$$
 alors $0 + 0 - 3 \le x^2 - 2x - 3 \le 4 + 4 - 3$ c'est-à-dire $f(x) \in [-3; 5]$

Autre méthode possible : om montre que f est décroissante sur $]-\infty;-1]$ et donc que :

$$si -2 \le x \le 0 alors f(0) \le f(x) \le f(-2).$$

3) a)
$$P(4) = 4^3 - 15 \times 4 - 4 = 64 - 60 - 4 = 0$$
 donc 4 est racine de $P(x)$.

b)
$$(x-4)(ax^2+bx+c) = ax^3+x^2(-4a+b)+x(-4b+c)-4c$$

or $P(x) = x^3 - 15x - 4$ donc par identification, on en déduit que a = 1, b = 4a = 4, c = 1

donc
$$P(x) = (x-4)(x^2+4x+1)$$

Cherchons les racines de $x^2 + 4x + 1$: $\Delta = b^2 - 4ac = 16 - 4 = 12$ donc $\begin{cases} x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - \sqrt{12}}{2} = -2 - \sqrt{3} \\ x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + \sqrt{12}}{2} = -2 + \sqrt{3} \end{cases}$

D'où
$$P(x) = (x-4)(x+2+\sqrt{3})(x+2-\sqrt{3})$$

Tableau de signe :

x	-∞	-2-	$\sqrt{3}$	-2+	$\sqrt{3}$	4		+∞
x-4	_	-	_		_	ф	+	
$x + 2 + \sqrt{3}$	_	- ф	+		+		+	
$x + 2 - \sqrt{3}$	_	-	_	¢	+		+	
P(x)	_	- ф	+	¢) —	ф	+	

Donc
$$S = \left[-2 - \sqrt{3}; -2 + \sqrt{3}\right] \cup \left[4; +\infty\right[$$

4)
$$I_9: -x^2 + \sqrt{3} + \frac{6}{x^2} \le 0$$
 Valeur interdite $: x = 0$

Soit $x \in \mathbb{R}^*$, x est solution de I_9 ssi $\frac{-x^4 + \sqrt{3}x^2 + 6}{x^2} \leq 0$

$$ssi - x^4 + \sqrt{3}x^2 + 6 \le 0 \quad car \, \forall x \in \mathbb{R}^*, \ x^2 > 0$$

On pose
$$X=x^2$$
 et on résout $-X^2+\sqrt{3}X+6\leq 0$: $\Delta=27>0$ donc
$$\begin{cases} X_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\sqrt{3}-\sqrt{27}}{-2}=2\sqrt{3}\\ X_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\sqrt{3}+\sqrt{27}}{-2}=-\sqrt{3} \end{cases}$$

Soit
$$-(X + \sqrt{3})(X - 2\sqrt{3}) \le 0$$
 Or $X = x^2$ donc on résout $-(x^2 + \sqrt{3})(x^2 - 2\sqrt{3}) \le 0$

Or $x^2 + \sqrt{3} > 0$, $\forall x \in \mathbb{R}^*$ donc il suffit de résoudre $x^2 - 2\sqrt{3} \ge 0$

$$x^2 - 2\sqrt{3} \ge 0 \ ssi \ (x - \sqrt{2\sqrt{3}})(x + \sqrt{2\sqrt{3}}) \ge 0 \ \text{or un polynôme du } 2^{\text{nd}} \ \text{degr\'e est du signe de a \`a l'extérieur des racines donc}$$

$$S =] - \infty; -\sqrt{2\sqrt{3}}] \ \cup \ [\sqrt{2\sqrt{3}}; + \infty[$$

$$E_{10}: |-3x+4|+|-5+x|=10$$

On détermine les valeurs frontières de chaque valeur absolue : -3x + 4 = 0 soit x = 4/3 et -5 + x = 0 soit x = 5 On remplit un tableau de forme :

х	-∞		$\frac{4}{3}$		5		+∞
-3x + 4		-3x + 4	0	3x - 4	11	3x - 4	
-5 + x		5 – x	$\frac{11}{3}$	5 – x	0	-5 + x	
(E ₁)		$-4x+9 = 10$ $x = -\frac{1}{4}$ possible		$2x + 1 = 10$ $x = \frac{9}{2}$ possible		$4x - 9 = 10$ $x = \frac{19}{4}$ impossible	

D'où
$$S = \left\{-\frac{1}{4}; \frac{9}{2}\right\}$$

$$I_{11}$$
: $|2x - 1| \le |x + 2|$

On détermine les valeurs frontières de chaque valeur absolue : 2x - 1 = 0 soit $x = \frac{1}{2}$ et x + 2 = 0 soit x = -2 On remplit un tableau de forme :

		-2		1		1.00
х	-∞	- 2		2		+∞
2x - 1	-2x + 1	. 5	-2x + 1	0	2x - 1	
x + 2	-x - 2	0	x + 2	5 2	x + 2	
(E ₂)	$-2x+1 \leqslant -x \geqslant 3$ $impossib$ $S_1 = \emptyset$		$-2x+1 \leqslant x+2$ $x \geqslant -\frac{1}{3}$ $S_2 = \left[-\frac{1}{3}; \frac{1}{2} \right]$		$2x-1 \le x+2$ $x \le 3$ $S_3 = \left[\frac{1}{2}; 3\right]$	

D'où
$$S = S_1 \cup S_2 \cup S_3 = [-\frac{1}{3}; 3]$$

 $I_{12}: x+1 \ge \sqrt{3-x}$ $\sqrt{3-x}$ est définie pour $x \le 3$. De plus, pour que l'inéquation soit possible, il faut que $x+1 \ge 0$ donc $x \in [-1;3]$.

On élève chacun des membres de I_{12} au carré, on peut garder l'équivalence car chacun des membres de l'inégalité est positif sur [-1; 3] et que la fonction carrée est strictement croissante sur \mathbb{R}^+ .

Soit $x \in [-1;3]$, x est solution de I_{12} ssi $(x+1)^2 \ge 3-x$, soit $x^2+3x-2 \ge 0$.

Les racines du polynôme x^2+3x-2 sont $\begin{cases} x_1=\frac{-3-\sqrt{17}}{2} \\ x_2=\frac{-3+\sqrt{17}}{2} \end{cases}$ Or un polynôme du $2^{\rm nd}$ degré est du signe de x^2 à l'extérieur des racines et $x\in[-1;3]$ donc $subseteq S=\left[\frac{-3+\sqrt{17}}{2};3\right]$

 $I_{13}: e^{2x} + 3e^x - 4 \ge 0$ On pose $X = e^x$ et on résout alors $X^2 + 3X - 4 \ge 0$, soit $(X - 1)(X + 4) \ge 0$

Or un polynôme du $2^{\rm nd}$ degré est du coefficient de x^2 à l'extérieur des racines donc $e^x \le -4$ ou $e^x \ge 1$

 $e^x \le -4$ est impossible et $e^x \ge 1$ ssi $x \ge 0$ donc $|S = \mathbb{R}^+|$

Exercice 3: Etude de fonctions

1)
$$f(x) = x^3 - 6x^2 + 2$$
, f est définie sur \mathbb{R}
$$\lim_{\substack{x \to +\infty \\ x \to -\infty}} f(x) = \lim_{\substack{x \to +\infty \\ x \to -\infty}} x^3 = +\infty$$
 car la limite en l'infini d'un polynôme correspond à celle du monôme de plus haut degré.

• f est dérivable sur \mathbb{R} comme fonction polynôme. $f'(x) = 3x^2 - 12x = 3x(x-4)$ Un polynôme du second degré est du signe du coefficient de x^2 à l'extérieur des racines donc :

x	-∞		0		4		+∞
Signe de $f'(x)$		+	0	_	0	+	
Variations de f	-8		√ 2 <		-30		+∞

2)
$$f(x) = (2 - x)\sqrt{x}$$
, f est définie sur \mathbb{R}^{-1} $\frac{1}{2}$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} 2 - x = -\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \sqrt{x} = +\infty$$

$$\operatorname{donc} \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = -\infty$$

2)
$$f(x) = (2-x)\sqrt{x}$$
, f est définie sur \mathbb{R}^+ $\lim_{x \to +\infty} 2 - x = -\infty$ $\lim_{x \to +\infty} \sqrt{x} = +\infty$ $\int \operatorname{donc} \lim_{x \to +\infty} f(x) = -\infty$ • f est dérivable sur \mathbb{R}^{+*} comme produit de fonctions dérivables. $f = u \times v$ avec $u(x) = 2 - x$, $u'(x) = -1$, $v(x) = \sqrt{x}$, $v'(x) = \frac{1}{2\sqrt{x}}$

$$f' = u' \times v + u \times v' \quad \text{donc } f'(x) = -\sqrt{x} + \frac{2-x}{2\sqrt{x}} = \frac{\sqrt{x}}{x} (1 - \frac{3}{2}x) \quad f'(x) \text{ est du signe de } 1 - \frac{3}{2}x$$
Tableau de variation de f :

Tableau de variati	<u>on de ƒ :</u>			
х	0	2		 Equation de la tangente au point d'ab
	+∞	3		$T_a: y = f'(a)(x - a) + f(a)$
Signe de $f'(x)$:::: +	0	_	or $f'(1) = -\frac{1}{2}$ et $f(1) = 1$
Variations de f	1	$f\left(\frac{2}{3}\right)$		Donc T_1 : $y = -\frac{1}{2}(x-1) + 1 = -\frac{x}{2} + \frac{1}{2}$
	0		+∞	

3)
$$f(x) = \frac{2x-1}{x-2}$$
, f est définie sur $\mathbb{R} \setminus \{3\}$

3)
$$f(x) = \frac{2x-1}{x-3}$$
, f est définie sur $\mathbb{R} \setminus \{3\}$
 $f(x) = \frac{2x-1}{x-3} = \frac{2-\frac{1}{x}}{1-\frac{3}{x}}$ donc $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 2$
 $\lim_{x \to 3^+} f(x) = +\infty$ et $\lim_{x \to 3^-} f(x) = -\infty$

• f est dérivable sur $\mathbb{R}\setminus\{3\}$ comme fonction rationnelle.

•
$$f$$
 est dérivable sur $\mathbb{R}\setminus\{3\}$ comme fonction rationnelle. $f=\frac{u}{v}$ avec $u(x)=2x-1$, $u'(x)=2$, $v(x)=x-3$, $v'(x)=1$ $f'=\frac{u'\times v-u\times v'}{v^2}$ donc $\forall x\in\mathbb{R}\setminus\{3\}$, $f'(x)=\frac{2(x-3)-(2x-1)}{(x-3)^2}=\frac{-5}{(x-3)^2}<0$

Donc
$$f$$
 est strictement décroissante sur] $-\infty$; 3[et sur] 3; $+\infty$ [

4)
$$f(x) = \frac{x^2 - 3x}{x + 1}$$
, f est définie sur $\mathbb{R} \setminus \{-1\}$
 $f(x) = \frac{2x - 3}{1 + \frac{1}{x}}$ donc $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$
 $\lim_{x \to -1^+} f(x) = +\infty$ et $\lim_{x \to -1^-} f(x) = -\infty$

•
$$f$$
 est dérivable sur $\mathbb{R}\setminus\{-1\}$ comme fonction rationnelle.
$$f=\frac{u}{v} \text{ avec } u(x)=x^2-3x, \quad u'(x)=2x-3, \quad v(x)=x+1, \quad v'(x)=1$$

$$f'=\frac{u'\times v-u\times v'}{v^2} \quad \text{donc } f'(x)=\frac{(2x-3)(x+1)-(x^2-3x)}{(x+1)^2}=\frac{x^2+2x-3}{(x+1)^2}=\frac{(x-1)(x+3)}{(x+1)^2}$$
 Donc $f'(x)$ est du signe de x^2+2x-3 , donc du signe du coefficient de x^2 à l'extérieur des racines.

Tableau de variation de f:

x	$-\infty$	-3	-1	1	+∞
Signe de $f'(x)$		+ 0	-	- 0	+
Variations de f	-8	-9		+∞	1

• Montrons que $\Omega(-1; -5)$ est un centre de symétrie. Pour ce faire, montrons que Ω est le milieu de [MM'], M ayant pour abscisse -1 + h et M' ayant pour abscisse -1 - h avec $h \in \mathbb{R}^*$.

 $-1 + h \in \mathcal{D}_f$ et $-1 - h \in \mathcal{D}_f$. Calculons f(-1 + h) et f(-1 - h)

$$f(-1+h) = \frac{h^2 - 2h + 1 + 3 - 3h}{h} = h - 5 + \frac{4}{h}$$

$$f(-1-h) = \frac{h^2 + 2h + 1 + 3 + 3h}{-h} = -h - 5 - \frac{4}{h}$$

$$\text{Donc } x_{\Omega} = \frac{x_M + x_M'}{2} \text{ et } y_{\Omega} = \frac{y_M + y_M'}{2}. \text{ Donc } \Omega(-1; -5) \text{ est bien centre de symétrie } \text{de}\mathcal{C}_f$$

- Donc \mathcal{C} est en-dessous de Δ sur $]-\infty$; -1[et \mathcal{C} est au-dessus de Δ sur]-1; $+\infty[$.
 - 5) $f(x) = 3e^{2-x} + e$, f est définie et dérivable sur \mathbb{R} . $f'(x) = -3e^{2-x} < 0$ sur \mathbb{R} donc f est strictement décroissante sur \mathbb{R} .
- 6) $f(x) = \cos x \times (1 + \cos x)$, f est définie sur \mathbb{R} . $f(x + 2\pi) = f(x)$. f est 2π -périodique. De plus, si $x \in \mathcal{D}_f$ alors, $-x \in \mathcal{D}_f$ et f(-x) = f(x) donc f est paire. On limitera notre étude à $[0, \pi]$ f est dérivable sur $\mathbb R$ sur comme produit de fonctions dérivables.

$$f'(x) = (-\sin x) \times (1 + \cos x) + \cos x \times (-\sin x) = -\sin x (1 + 2\cos x)$$
$$\cos x = -\frac{1}{2} \iff x = \frac{2\pi}{3} + 2k\pi \quad \text{ou} \quad x = -\frac{2\pi}{3} + 2k\pi \quad \text{avec } k \in \mathbb{Z}$$

Tableau de variation de f:

<u> </u>								
x	0			$\frac{2\pi}{3}$		π		
$-\sin x$	0		_		_	0		
$1+2\cos x$			+	0	-			
Signe de $f'(x)$	0		_	0	+	0		
Variations de f	2 \		\	▲ -1/4	4	▼ 0		

Exercice 4 :

$$f(x) = ax + b - \frac{c}{x+2}$$

1) f est dérivable sur $\mathbb{R} \setminus \{-2\}$ comme somme de fonctions dérivables sur $\mathbb{R} \setminus \{-2\}$. $f'(x) = a + \frac{c}{(x+2)^2}$

$$f'(x) = a + \frac{c}{(x+2)^2}$$

2)
$$A(1;2) \in C_f$$
 donc $f(1) = a + b - \frac{c}{3} = 2$

$$T_{-1}$$
: $y = -x - 1$ donc $f'(-1) = -1$ soit $a + c = -1$ et $f(-1) = 0$ soit $-a + b - c = 0$

2) $A(1;2) \in C_f \text{ donc } f(1) = a + b - \frac{c}{3} = 2$ $T_{-1}: y = -x - 1 \text{ donc } f'(-1) = -1 \text{ soit } a + c = -1 \text{ et } f(-1) = 0 \text{ soit } -a + b - c = 0$ On résout donc le système : $\begin{cases} a + b - \frac{c}{3} = 2 \\ a + c = -1 \\ -a + b - c = 0 \end{cases}$ (S)

$$(a,b,c) \text{ est solution de } (S) \ ssi \begin{cases} a+b-\frac{c}{3}=2 \\ a+c=-1 \\ b=-1 \ (l_2+l_3 \to l_3) \end{cases} ssi \begin{cases} a-\frac{c}{3}=3 \\ a=-1-c \\ b=-1 \end{cases} ssi \begin{cases} a-\frac{4c}{3}=4 \\ a=-1-c \\ b=-1 \end{cases} ssi \begin{cases} c=-3 \\ a=2 \\ b=-1 \end{cases}$$

Donc
$$f(x) = 2x - 1 + \frac{3}{x+2}$$

3) Deux droites sont parallèles quand elles ont même coefficient directeur. Or le coefficient de la tangente à $\mathcal C$ au point d'abscisse x vaut f'(x). On résout donc f'(x) = 1.

x est solution de l'équation f'(x) = 1 ssi $2 - \frac{3}{(x+2)^2} = 1$ ssi $3 = (x+2)^2$ ssi $x^2 + 4x + 1 = 0$ ssi $\begin{cases} x_1 = -2 - \sqrt{3} \\ x_2 = -2 + \sqrt{3} \end{cases}$ La tangente à \mathcal{C} aux points d'abscisse x_1 et x_2 est parallèle à Δ .

Exercice 5 : Calcul de dérivées de fonctions composées

1)
$$f: x \mapsto 5x - 2 \mapsto \sqrt{5x - 2}$$
 donc $f(x) = h \circ i(x)$ avec $h(x) = \sqrt{x}$ et $i(x) = 5x - 2$ h est dérivable sur \mathbb{R}^{+*} et $h'(x) = \frac{1}{2\sqrt{x}}$

i est dérivable sur
$$\mathbb{R}$$
, $i(x) > 0$ pour $x > \frac{2}{5}$ et $i'(x) = 5$

Donc
$$f$$
 est dérivable sur $\left[\frac{2}{5}; +\infty\right[, f'=i'\times h'(i)\right]$
Donc $f'(x)=\frac{5}{2\sqrt{5x-2}}$

Donc
$$f'(x) = \frac{5}{2\sqrt{5x-2}}$$

2)
$$g: x \mapsto 2x - 3 \mapsto (2x - 3)^5$$
 donc $g(x) = j \circ k(x)$ avec $j(x) = x^5$ et $k(x) = 2x - 3$ j est dérivable sur \mathbb{R} et $j'(x) = 5x^4$ k est dérivable sur \mathbb{R} et $k'(x) = 2$ Donc g est dérivable sur \mathbb{R} , $g' = k' \times j'(k)$ Donc $g'(x) = 10(2x - 3)^4$

3)
$$h: x \mapsto x^2 - 3x \mapsto e^{x^2 - 3x}$$
 donc $h(x) = l \circ m(x)$ avec $l(x) = e^x$ et $m(x) = x^2 - 3x$ l est dérivable sur \mathbb{R} et $l'(x) = e^x$ m est dérivable sur \mathbb{R} et $m'^{(x)} = 2x - 3$ Donc m est dérivable sur m Donc m

Exercice 6:

1)
$$\forall m \in \mathbb{R}, (-1; -2) \in \mathfrak{D}_m$$
. En effet, $m(-1+1) - 2 = -2$.

Donc le point C de coordonnées (-1; -2) est le point fixe recherché. De plus, $C \in \mathcal{H}$, car $\frac{2}{-1} = -2$

2) m représente le coefficient directeur de \mathfrak{D}_m .

3) On résout l'équation
$$(E): \frac{2}{x} = m(x+1) - 2$$
 Valeur interdite : $x = 0$

Soit $x \in \mathbb{R}^*$, x est solution de (E) ssi $mx^2 + x(m-2) - 2 = 0$ (E')

$$1^{er}$$
 cas : $m = 0$ (E') s'écrit $-2x - 2 = 0$ Soit $x = -1$ et $y = -2$

$$\underline{2^{\text{ème}} \text{ cas}}: m \neq 0$$
 On calcule le discriminant : $\Delta = (m-2)^2 + 8m = m^2 + 4m + 4 = (m+2)^2$

$$\Delta = 0$$
 pour $m = -2$, (E') s'écrit $-2x^2 - 4x - 2 = 0$ donc $x = -1$ donc $\mathcal{H} \cap \mathfrak{D}_{-2} = \{C(-1; -2)\}$

 $\Delta > 0 \quad \forall m \in \mathbb{R} \setminus \{0; -2\}$, l'équation (E') admet deux solutions, il y a donc deux points d'intersection.

$$\begin{cases} x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(m-2) - |m+2|}{2m} \\ x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(m-2) + |m+2|}{2m} \\ \sin m > -2 \;, \qquad \begin{cases} x_1 = -1 & \text{donc } y_1 = 2 \\ x_2 = \frac{2}{m} & \text{donc } y_1 = m \end{cases} \quad \text{et} \quad \sin m < -2 \;, \qquad \begin{cases} x_1 = \frac{2}{m} & \text{donc } y_1 = m \\ x_2 = -1 & \text{donc } y_1 = 2 \end{cases}$$

Si
$$m = 0$$
 $\mathcal{H} \cap \mathfrak{D}_0 = \{C(-1; -2)\}$
Si $m = -2$ $\mathcal{H} \cap \mathfrak{D}_{-2} = \{C(-1; -2)\}$
 $\forall m \in \mathbb{R} \setminus \{0; -2\}$ $\mathcal{H} \cap \mathfrak{D}_m = \left\{C(-1; -2); B\left(\frac{2}{m}; m\right)\right\}$

Exercice 7: Suites

1)
$$u_n = u_0 + nr$$
 donc $u_0 = u_{100} - 100r = 650 - 100 \times 8 = -150$

2)
$$S = 1 + 3 + 9 + 27 + \dots + 59049 = 3^{0} + 3^{1} + 3^{2} + \dots + 3^{10}$$

C'est la somme des termes d'une suite géométrique de raison 3 donc $S = \frac{u_0(1-q^{n+1})}{1-q} = \frac{1-3^{11}}{1-3} = 88573$

 $S'=1+4+7+\cdots+1000$. C'est la somme des termes d'une suite arithmétique de raison 3. Donc $u_n=u_0+nr$ Le nombre de termes est $n+1=\frac{u_n-u_0}{r}+1$. Soit $n+1=\frac{1000-1}{3}+1=334$ donc $S'=(n+1)\times\frac{u_0+u_n}{2}=334\times\frac{1001}{2}=167167$

3)
$$\forall n \in \mathbb{N}, u_n = \frac{n}{1+n}$$

a.
$$u_0 = 0$$
 $u_1 = \frac{1}{2}$ $u_2 = \frac{2}{3}$ $u_3 = \frac{3}{4}$

 $u_1 - u_0 \neq u_2 - u_1$ donc u n'est pas une suite arithmétique.

 $\frac{u_2}{u_1} \neq \frac{u_3}{u_2}$ donc u n'est pas une suite géométrique.

b. On calcule
$$\boldsymbol{u}_{n+1} - \boldsymbol{u}_n$$

$$u_{n+1} - u_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{1}{(n+2)(n+1)} > 0 \quad \forall n \in \mathbb{N}$$

Donc la suite u est croissante.

4) Montrons par récurrence que (u_n) est majorée par 4. On note $\mathcal{P}(n)$: $u_n \leq 4$

<u>Initialisation</u>: $u_0 = 0 \le 4 \text{ donc } \mathcal{P}(0) \text{ vraie}$

<u>Hérédité</u> : **Soit** $n \in \mathbb{N}$. Je suppose que $\mathcal{P}(n)$ est vraie, c'est-à-dire $u_n \leq 4$.

Montrons que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire $u_{n+1} \leq 4$.

$$u_n \le 4$$
 donc $3u_n + 4 \le 3 \times 4 + 4$. Or, $x \mapsto \sqrt{x}$ est strictement croissante sur \mathbb{R}^+ , donc $\sqrt{3u_n + 4} \le \sqrt{16}$

D'où
$$u_{n+1} \le 4$$
 ($\mathcal{P}(n+1)$ est vraie)

<u>Conclusion</u>: D'après le principe de récurrence, $\forall n \in \mathbb{N}, \mathcal{P}(n)$ est vraie c'est-à-dire $\forall n \in \mathbb{N}, u_n \leq 4$

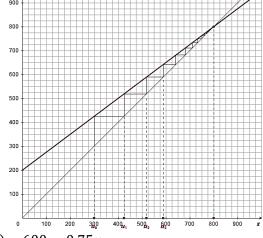
Exercice 8 : Suite arithmético-géométrique

1)- Pour obtenir la représentation des quatre premiers termes de la suite :

- Placer le terme initial $u_0 = 300$ sur l'axe des abscisses,
- Comme $u_1=0.75u_0+200$, u_1 est l'ordonnée de la droite d'équation y=0.75.x+200 d'abscisse 300,
- A l'aide de la droite d'équation y=x, rabattre l'ordonnée u_1 sur l'axe des abscisses,
 - Poursuivre ce procédé pour représenter u_2 et u_3 .

Graphiquement, la suite semble converger vers l'abscisse du point d'intersection des deux droites. Cette abscisse est solution de l'équation x=0.75x+200, c'est-à-dire x=800.

La suite semble donc converger vers 800.



2)- a-
$$\forall n, \ v_{n+1} = u_{n+1} - 800 = 0.75. \ u_n + 200 - 800 = 0.75 (v_n + 800) - 600 = 0.75 v_n$$
 Donc la suite v est bien géométrique de raison 0.75 et de premier terme $v_0 = u_0 - 800 = -500$ b- $v_n = v_0. \ q^n = -500 \times 0.75^n$ donc $u_n = v_n + 800 = 800 - 500 \times 0.75^n$ c- $0 < 0.75 < 1$, donc $\lim_{n \to +\infty} 0.75^n = 0$ donc $\lim_{n \to +\infty} -500 \times 0.75^n = 0$ donc $\lim_{n \to +\infty} u_n = 800$

3)- a- On cherche n tel que $u_n \ge 790$. On écrit un algorithme sur la calculatrice permettant de trouver la première valeur de n vérifiant l'inégalité.

Initialisation

U prend la valeur 300

N prend la valeur 0

Traitement

Tant que U<790

U prend la valeur U*0,75+200

N prend la valeur N+1

Fin Tant que

b- $u_n = 800 - 500 \times 0.75^n$ donc la suite u est majorée par 800. Le gérant ne pourra donc jamais espérer 1000 abonnés.

Afficher N

On trouve : *n=14.*

Le nombre d'abonnés sera supérieur à 790 à partir de 2024.

Exercice 9 : Trigonométrie

1) a) Soit
$$t \in \mathbb{R}$$
, t est solution de $\cos(t) = \cos\frac{3\pi}{4} ssi\begin{cases} t = \frac{3\pi}{4} + 2k\pi & (k \in \mathbb{Z}) \\ ou \\ t = -\frac{3\pi}{4} + 2k\pi & (k \in \mathbb{Z}) \end{cases}$

$$\operatorname{donc} \mathcal{S} = \left\{ \frac{3\pi}{4} + 2k\pi, -\frac{3\pi}{4} + 2k\pi, avec \ k \in \mathbb{Z} \right\}$$

b) Soit
$$t \in \mathbb{R}$$
, t est solution de $\sin(t) = -\frac{\sqrt{2}}{2} ssi \sin(t) = \sin\left(-\frac{\pi}{4}\right) ssi \begin{cases} t = -\frac{\pi}{4} + 2k\pi & (k \in \mathbb{Z}) \\ ou \\ t = -\frac{3\pi}{4} + 2k\pi & (k \in \mathbb{Z}) \end{cases}$

donc
$$S = \left\{ -\frac{\pi}{4} + 2k\pi, -\frac{3\pi}{4} + 2k\pi, avec \ k \in \mathbb{Z} \right\}$$

c) Soit
$$t \in \mathbb{R}$$
, t est solution de $\cos(t) = -\cos\frac{\pi}{5} \ ssi \ \cos(t) = \cos\left(\pi - \frac{\pi}{5}\right) = \cos\frac{4\pi}{5}$

c) Soit
$$t \in \mathbb{R}$$
, t est solution de $\cos(t) = -\cos\frac{\pi}{5}$ s si $\cos(t) = \cos\left(\pi - \frac{\pi}{5}\right) = \cos\frac{4\pi}{5}$
$$\begin{cases} t = \frac{4\pi}{5} + 2k\pi & (k \in \mathbb{Z}) \\ ou \\ t = -\frac{4\pi}{5} + 2k\pi & (k \in \mathbb{Z}) \end{cases}$$
 donc $S = \left\{\frac{4\pi}{5} + 2k\pi, -\frac{4\pi}{5} + 2k\pi, avec \ k \in \mathbb{Z}\right\}$

donc
$$S = \left\{ \frac{4\pi}{5} + 2k\pi, -\frac{4\pi}{5} + 2k\pi, avec \ k \in \mathbb{Z} \right\}$$

d) Soit
$$t \in \mathbb{R}$$
, t est solution de $\sin(2t) = \frac{1}{2}ssi \sin(2t) = \sin\left(\frac{\pi}{6}\right) ssi$
$$\begin{cases} t = \frac{\pi}{12} + k\pi & (k \in \mathbb{Z}) \\ ou \\ t = \frac{5\pi}{12} + k\pi & (k \in \mathbb{Z}) \end{cases}$$

donc
$$S = \left\{ \frac{\pi}{12} + k\pi, \frac{5\pi}{12} + k\pi, avec \ k \in \mathbb{Z} \right\}$$

e) Soit
$$x \in \mathbb{R}$$
, x est solution de $\sin(2x) = -\cos\left(\frac{2\pi}{5}\right)$ $ssi \sin(2x) = \sin\left(-\frac{\pi}{2} + \frac{2\pi}{5}\right)$

$$ssi\begin{cases} 2x = -\frac{\pi}{10} + 2k\pi & (k \in \mathbb{Z}) \\ ou \\ 2x = \pi + \frac{\pi}{10} + 2k\pi & (k \in \mathbb{Z}) \end{cases}$$
$$ssi\begin{cases} x = -\frac{\pi}{20} + k\pi & (k \in \mathbb{Z}) \\ ou \\ x = \frac{11\pi}{20} + k\pi & (k \in \mathbb{Z}) \end{cases}$$

donc
$$S = \left\{ -\frac{\pi}{20} + k\pi, \frac{11\pi}{20} + k\pi, avec \ k \in \mathbb{Z} \right\}$$

2)
$$A(x) = \sin(\pi + x) + \cos(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} + x) + \sin(\pi - x) = -\sin x + \sin x - \sin x + \sin x = 0$$

Donc $A(x) = 0$

$$B(x) = \cos(x+\pi)\sin\left(\frac{\pi}{2} - x\right) - \sin^2(-x) = -\cos x \times \cos x - \sin^2 x = -1 \qquad \text{Donc} \overline{B(x) = -1}$$

$$B(x) = \cos(x+\pi)\sin\left(\frac{\pi}{2}-x\right) - \sin^2(-x) = -\cos x \times \cos x - \sin^2 x = -1 \qquad \text{Donc} \ \overline{B(x)} = -1$$

$$C(x) = \sin\left(\frac{\pi}{3}+x\right) - \sin\left(\frac{\pi}{3}-x\right) = \sin\frac{\pi}{3} \times \cos x + \cos\frac{\pi}{3} \times \sin x - \sin\frac{\pi}{3} \times \cos x + \cos\frac{\pi}{3} \times \sin x = \frac{1}{2}\sin x + \frac{1}{2}\sin x$$

$$\overline{C(x)} = \sin x$$

$$D(x) = (\cos x + \sin x)^2 + (\cos x - \sin x)^2 = \cos^2 x + 2\cos x \sin x + \sin^2 x + \cos^2 x - 2\cos x \sin x + \sin^2 x = 2$$
Donc $D(x) = 2$

3) Soit
$$x \in \mathbb{R}$$
, $\cos^4 x - \sin^4 x = (\cos^2 x + \sin^2 x)(\cos^2 x - \sin^2 x) = \cos^2 x - \sin^2 x = \cos 2x$
Donc $\forall x \in \mathbb{R}$, $\cos^4 x - \sin^4 x = \cos 2x$

Exercice 10 : Probabilités conditionnelles

- 1. A et \overline{A} forment une partition de l'univers étudié donc $P(B) = P(A \cap B) + P(\overline{A} \cap B)$ Donc $P(A \cap B) = P(B) - P(\overline{A} \cap B) = P(B) - P(\overline{A}) \times P_{\overline{A}}(B) = 0.39 - 0.9 \times 0.4 = 0.03$
- 2. $P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.03}{0.1} = 0.3$

Exercice 11 : Géométrie analytique

1° La droite \mathfrak{D} contient les points E(0; 1) et F(1; 3).

 $2^{\circ} \vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ est un vecteur directeur de \mathfrak{D} ,

donc $\vec{n} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ est un vecteur normal à \mathfrak{D} .

 $3^{\circ} \vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ est un vecteur normal à Δ .

 $3^{\circ} \vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ est un vecteur normal à Δ .

Soit un point M(x; y). $M \in \Delta$ si, et seulement si, $\vec{u} \cdot \overrightarrow{AM} = 0$;

 $M \in \Delta$ si, et seulement si, $1 \times (x-3) + 2 \times (y-2) = 0$;

 $M \in \Delta$ si, et seulement si, x + 2y - 7 = 0;

 $M \in \Delta$ si, et seulement si, $y = -\frac{1}{2}x + \frac{7}{2}$.

Une équation de Δ est $y = -\frac{1}{2}x + \frac{7}{2}$.

4° Le point d'intersection
$$H(x; y)$$
 des droites \mathfrak{D} et Δ vérifie :
$$\begin{cases} y = 2x + 1 \\ y = -\frac{1}{2}x + \frac{7}{2}; \end{cases}$$

ce système équivant successivement à : $\begin{cases} y = 2x + 1 \\ 2x + 1 = -\frac{1}{2}x + \frac{7}{2} \end{cases}$

$$\begin{cases} y = 2x + 1 \\ \frac{5}{2}x = \frac{5}{2} \end{cases}$$
$$\begin{cases} y = 3 \\ x = 1 \end{cases}$$

D'où H(1; 3).

$$5^{\circ} \overrightarrow{AH} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$
, d'où : $AH = \sqrt{(-2)^2 + 1^2} = \sqrt{5}$.

6° Le cercle $\mathscr C$ de centre A, tangent à $\mathscr D$ est le cercle dont un rayon est [AH], puisque (AH) est orthogonale à $\mathscr D$.

Soit un point M(x; y).

 $M \in \mathscr{C}$ si, et seulement si, $AM = \sqrt{5}$;

 $M \in \mathcal{C}$ si, et seulement si, $AM^2 = 5$;

 $M \in \mathscr{C}$ si, et seulement si, $(x-3)^2 + (y-2)^2 = 5$.

Une équation du cercle % est $(x-3)^2 + (y-2)^2 = 5$

(ou, sous forme développée : $x^2 + y^2 - 6x - 4y + 8 = 0$).

Exercice 12 : Géométrie analytique

Dans le repère proposé, les coordonnées des points sont :

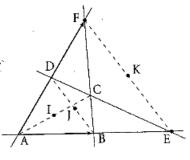
A(0,0); B(1,0); D(0,d); E(e,0); F(0,1). On a $e \ne 0$ et $d \ne 0$.

1. En utilisant le résultat de l'exercice 6, les équations demandées sont :

(BF)
$$x+y-1=0$$
;
(DE) $\frac{x}{e} + \frac{y}{d} - 1 = 0$.

2. I est le milieu de [AC], il nous faut calculer les coordonnées de C:

$$\begin{cases} x + y - 1 = 0 \\ \frac{x}{e} + \frac{y}{d} - 1 = 0 \end{cases}$$



- En multipliant la 1^{re} équation par $-\frac{1}{d}$ et en additionnant membre à membre :

$$x\left(\frac{1}{e} - \frac{1}{d}\right) = 1 - \frac{1}{d}$$
$$x = \frac{(d-1)e}{d-e}.$$
$$(e-1)d$$

De même :

Les coordonnées de C et I sont donc respectivement :

$$C\begin{pmatrix} \frac{(d-1)e}{d-e} \\ \frac{(e-1)d}{e-d} \end{pmatrix}; \quad I\begin{pmatrix} \frac{(d-1)e}{2(d-e)} \\ \frac{(e-1)d}{2(e-d)} \end{pmatrix}.$$

Les coordonnées de J et K sont respectivement :

$$\begin{bmatrix}
\begin{bmatrix} \frac{1}{2} \\ \frac{d}{2} \end{bmatrix}, & K \begin{pmatrix} \frac{e}{2} \\ \frac{1}{2} \end{pmatrix}.
\end{bmatrix}$$

J est le milieu de [BD], donc les coordonnées de J sont les demisommes des coordonnées des points

3. Montrer que JI et JK sont colinéaires :

$$\overrightarrow{JI}\begin{pmatrix} \frac{(d-1)e}{2(d-e)} - \frac{1}{2} \\ \frac{(e-1)d}{2(e-d)} - \frac{d}{2} \end{pmatrix} = \begin{pmatrix} \frac{d(e-1)}{2(d-e)} \\ \frac{d(1-d)}{2(d-e)} \end{pmatrix}; \overrightarrow{JK}\begin{pmatrix} \frac{e-1}{2} \\ \frac{1-d}{2} \end{pmatrix}.$$

 $\frac{d(e-1)}{2(d-e)} \times \frac{1-d}{2} - \frac{d(1-d)}{2(d-e)} \times \frac{e-1}{2} = 0, \text{ donc les vecteurs } \overrightarrow{\text{JI}} \text{ et } \overrightarrow{\text{JK}} \text{ sont colinéaires}.$

Les points I, J, K sont alignés.